\(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [965]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 352 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 \left (6 a^2 b B-3 b^3 B-a b^2 (3 A-5 C)-8 a^3 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^4 \sqrt {a+b} d}+\frac {2 \left (3 A b^2-(2 a+b) (b (3 B-C)-4 a C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^3 \sqrt {a+b} d}+\frac {2 a \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 d} \]

[Out]

-2/3*(6*B*a^2*b-3*B*b^3-a*b^2*(3*A-5*C)-8*a^3*C)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b
)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d/(a+b)^(1/2)+2/3*(3*A*b^2-
(2*a+b)*(b*(3*B-C)-4*C*a))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-
sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d/(a+b)^(1/2)+2*a*(A*b^2-a*(B*b-C*a))*tan(d*x+c)/
b^2/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)+2/3*C*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/d

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {4175, 4167, 4090, 3917, 4089} \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 a \tan (c+d x) \left (A b^2-a (b B-a C)\right )}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 \cot (c+d x) \left (-8 a^3 C+6 a^2 b B-a b^2 (3 A-5 C)-3 b^3 B\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^4 d \sqrt {a+b}}+\frac {2 \cot (c+d x) \left (3 A b^2-(2 a+b) (b (3 B-C)-4 a C)\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{3 b^3 d \sqrt {a+b}}+\frac {2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b^2 d} \]

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(-2*(6*a^2*b*B - 3*b^3*B - a*b^2*(3*A - 5*C) - 8*a^3*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]
/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/
(3*b^4*Sqrt[a + b]*d) + (2*(3*A*b^2 - (2*a + b)*(b*(3*B - C) - 4*a*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a +
b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x
]))/(a - b))])/(3*b^3*Sqrt[a + b]*d) + (2*a*(A*b^2 - a*(b*B - a*C))*Tan[c + d*x])/(b^2*(a^2 - b^2)*d*Sqrt[a +
b*Sec[c + d*x]]) + (2*C*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*b^2*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4167

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
 + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*
B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4175

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(
e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a*(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*((a + b*Csc[e
+ f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*C
sc[e + f*x])^(m + 1)*Simp[b*(m + 1)*((-a)*(b*B - a*C) + A*b^2) + (b*B*(a^2 + b^2*(m + 1)) - a*(A*b^2*(m + 2) +
 C*(a^2 + b^2*(m + 1))))*Csc[e + f*x] - b*C*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e,
f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \int \frac {\sec (c+d x) \left (-\frac {1}{2} b \left (A b^2-a (b B-a C)\right )+\frac {1}{2} \left (2 a^2 b B-b^3 B-a b^2 (A-C)-2 a^3 C\right ) \sec (c+d x)+\frac {1}{2} b \left (a^2-b^2\right ) C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{b^2 \left (a^2-b^2\right )} \\ & = \frac {2 a \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 d}+\frac {4 \int \frac {\sec (c+d x) \left (-\frac {1}{4} b^2 \left (3 A b^2-3 a b B+2 a^2 C+b^2 C\right )+\frac {1}{4} b \left (6 a^2 b B-3 b^3 B-a b^2 (3 A-5 C)-8 a^3 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^3 \left (a^2-b^2\right )} \\ & = \frac {2 a \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 d}+\frac {\left (6 a^2 b B-3 b^3 B-a b^2 (3 A-5 C)-8 a^3 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )}+\frac {\left (3 A b^2-(2 a+b) (b (3 B-C)-4 a C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2 (a+b)} \\ & = -\frac {2 \left (6 a^2 b B-3 b^3 B-a b^2 (3 A-5 C)-8 a^3 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^4 \sqrt {a+b} d}+\frac {2 \left (3 A b^2-(2 a+b) (b (3 B-C)-4 a C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^3 \sqrt {a+b} d}+\frac {2 a \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(3856\) vs. \(2(352)=704\).

Time = 27.24 (sec) , antiderivative size = 3856, normalized size of antiderivative = 10.95 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Result too large to show} \]

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

((b + a*Cos[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((4*(3*a*A*b^2 - 6*a^2*b*B + 3*b^3*B + 8*a^3*C
 - 5*a*b^2*C)*Sin[c + d*x])/(3*b^3*(-a^2 + b^2)) - (4*(a*A*b^2*Sin[c + d*x] - a^2*b*B*Sin[c + d*x] + a^3*C*Sin
[c + d*x]))/(b^2*(-a^2 + b^2)*(b + a*Cos[c + d*x])) + (4*C*Tan[c + d*x])/(3*b^2)))/(d*(A + 2*C + 2*B*Cos[c + d
*x] + A*Cos[2*c + 2*d*x])*(a + b*Sec[c + d*x])^(3/2)) - (4*(b + a*Cos[c + d*x])*((-2*a*A)/((-a^2 + b^2)*Sqrt[b
 + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (4*a^2*B)/(b*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]
) - (2*b*B)/((-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (10*a*C)/(3*(-a^2 + b^2)*Sqrt[b + a*C
os[c + d*x]]*Sqrt[Sec[c + d*x]]) - (16*a^3*C)/(3*b^2*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]])
 - (2*a^2*A*Sqrt[Sec[c + d*x]])/(b*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]) + (2*A*b*Sqrt[Sec[c + d*x]])/((-a^2
+ b^2)*Sqrt[b + a*Cos[c + d*x]]) - (4*a*B*Sqrt[Sec[c + d*x]])/((-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]) + (4*a^3
*B*Sqrt[Sec[c + d*x]])/(b^2*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]) - (16*a^4*C*Sqrt[Sec[c + d*x]])/(3*b^3*(-a^
2 + b^2)*Sqrt[b + a*Cos[c + d*x]]) + (14*a^2*C*Sqrt[Sec[c + d*x]])/(3*b*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]])
 + (2*b*C*Sqrt[Sec[c + d*x]])/(3*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]) - (2*a^2*A*Cos[2*(c + d*x)]*Sqrt[Sec[c
 + d*x]])/(b*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]) - (2*a*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/((-a^2 + b^2
)*Sqrt[b + a*Cos[c + d*x]]) + (4*a^3*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(b^2*(-a^2 + b^2)*Sqrt[b + a*Cos[c
 + d*x]]) - (16*a^4*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b^3*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]) + (10
*a^2*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Cos[(c + d*x)/2]
^2*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(2*(a + b)*(-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C)
+ 8*a^3*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellip
ticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(3*A*b^2 + (2*a - b)*(4*a*C - b*(3*B + C)))*Sqrt
[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan
[(c + d*x)/2]], (a - b)/(a + b)] + (-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Cos[c + d*x]*(b + a*Co
s[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*b^3*(-a^2 + b^2)*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*
c + 2*d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)*((-2*a*Sqrt[Cos[(c + d*x)/2
]^2*Sec[c + d*x]]*Sin[c + d*x]*(2*(a + b)*(-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Sqrt[Cos[c + d*
x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/
2]], (a - b)/(a + b)] - 2*b*(a + b)*(3*A*b^2 + (2*a - b)*(4*a*C - b*(3*B + C)))*Sqrt[Cos[c + d*x]/(1 + Cos[c +
 d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a
 + b)] + (-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/
2]^2*Tan[(c + d*x)/2]))/(3*b^3*(-a^2 + b^2)*(b + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) + (2*Sqrt[Cos
[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(2*(a + b)*(-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)
*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSi
n[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(3*A*b^2 + (2*a - b)*(4*a*C - b*(3*B + C)))*Sqrt[Cos[c + d
*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)
/2]], (a - b)/(a + b)] + (-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Cos[c + d*x]*(b + a*Cos[c + d*x]
)*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*b^3*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2])
 - (4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(((-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Cos[c + d*x
]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4)/2 + ((a + b)*(-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*S
qrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((
Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos
[c + d*x])] - (b*(a + b)*(3*A*b^2 + (2*a - b)*(4*a*C - b*(3*B + C)))*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + C
os[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c +
d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + ((a + b)*(-6*a^2*b*B + 3*b
^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]],
(a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a +
 b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] - (b*(a + b)*(3*A*b^2 + (2
*a - b)*(4*a*C - b*(3*B + C)))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a -
b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(
1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] - a*(-6*a^2*b*B + 3*b^3*B + a*b
^2*(3*A - 5*C) + 8*a^3*C)*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (-6*a^2*b*B + 3*b^3*
B + a*b^2*(3*A - 5*C) + 8*a^3*C)*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (-6*a
^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c +
d*x)/2]^2 - (b*(a + b)*(3*A*b^2 + (2*a - b)*(4*a*C - b*(3*B + C)))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[
(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 -
((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) + ((a + b)*(-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Sqrt[Co
s[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt
[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan[(c + d*x)/2]^2]))/(3*b^3*(-a^2 + b^2)*Sqrt[b + a*Cos[
c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) - (2*(2*(a + b)*(-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Sqrt[
Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[
(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(3*A*b^2 + (2*a - b)*(4*a*C - b*(3*B + C)))*Sqrt[Cos[c + d*x]/(1
 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]],
(a - b)/(a + b)] + (-6*a^2*b*B + 3*b^3*B + a*b^2*(3*A - 5*C) + 8*a^3*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[
(c + d*x)/2]^2*Tan[(c + d*x)/2])*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c
 + d*x]*Tan[c + d*x]))/(3*b^3*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x
)/2]^2*Sec[c + d*x]])))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(5332\) vs. \(2(324)=648\).

Time = 28.51 (sec) , antiderivative size = 5333, normalized size of antiderivative = 15.15

method result size
parts \(\text {Expression too large to display}\) \(5333\)
default \(\text {Expression too large to display}\) \(5348\)

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + B*sec(d*x + c)^3 + A*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a)/(b^2*sec(d*x + c)^2
 + 2*a*b*sec(d*x + c) + a^2), x)

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**2/(a + b*sec(c + d*x))**(3/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(3/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(3/2)), x)